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Abstract

In this paper we deal with a facility location problem where one desires to establish facilities at two di�erent dis-

tribution levels by selecting the time periods. Our model intends to minimize the total cost for meeting demands for all

the products speci®ed over the planning horizon at various customer locations while satisfying the capacity require-

ments of the production plants and intermediate warehouses. We address this problem by means of a formulation as a

mixed integer programming problem. A Lagrangean relaxation is proposed to solve the problem, together with a

heuristic procedure that constructs feasible solutions of the original problem from the solutions at the lower bounds

obtained by the relaxed problems. Computational tests are provided showing the good performance of this approach

for a wide range of problems. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Multiperiod multi-echelon facility-location; Integer programming; Lagrangean dual; Heuristic

1. Introduction

In many real world situations where large companies manufacture and distribute products it is necessary
to locate production plants or warehouses to deliver goods or products to ®nal customers in order to meet
their demands. This is the case of health-care products, spare parts of cars or catalogues in travel agencies.
If the admissible locations of these facilities are ®nite and known in advance, we cope with a discrete plant
location problem. These problems have been widely studied and roughly speaking are classi®ed into: (1)
uncapacitated plant location problems (UPLP), and (2) capacitated plant location problems (CPLP). Both
kinds of problems can be formulated as mixed integer programming problems (see [1]). Nevertheless,
obtaining their exact solutions in polynomial time is not possible because Krarup and Pruzan [16] prove
that even the UPLP belongs to the class of NP-hard problems. See e.g. the papers of Aikens [1], Drezner [8]
or Daskin [7] for a good overview of these kinds of problems and their extensions.
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Among these extensions we shall focus on two of them. The ®rst one consists of introducing the dynamic
aspect into the problem. In this case, not only the transportation plan but also the time-staged establish-
ment of the facilities are decision variables (see e.g. [21,22], or more recently [6]). The second one consists of
the assumption of a certain structure in the transportation pattern. This is to say, the transportation follows
a two-step path. These models have been hardly studied in the classical literature of location (see e.g.
[15,18,20]), although recently a detailed analysis can be found in [7] or [17]. The main di�erence in these
models is that the products are delivered from the production plants to the warehouses and then from the
warehouses to the ®nal customers (or retailers). Therefore, the decision problem consists of locating the
plants and the warehouses and determining the amount of the di�erent products that will be delivered from
each open plant to each open warehouse and from each open warehouse to each ®nal customer. Obviously,
capacities may or may not be considered. That structure has been sometimes called two-echelon approach
(see [3,5,17]).

Despite the generality of these models, the most natural framework for these problems is the combi-
nation of these two approaches. That is, the joint consideration of multiperiod and multi-echelon aspects
(see Fig. 1). Nevertheless, as far as we know, this approach has never been addressed before and it can be
considered as an introduction to a new location problem.

In this paper, we deal with a multiperiod two-echelon multicommodity capacitated location problem.
We assume that the capacities of plants and warehouses, as well as demands and transportation costs
change over T time periods. We do not consider holding decisions. Our goal is to minimize the total cost for
meeting demands for the di�erent products speci®ed over time at various customer locations. Although no-
real application has motivated this model, it perfectly applies to those situations where intermediate dis-
tribution and seasonal demand exist. The formulation permits both the opening of new facilities and the
closing of existing ones. This is a very large mixed integer programming problem. For instance, for a
problem with 50 customers, 20 warehouses, 20 plants, two di�erent products and four time periods we shall
have 11360 variables and 764 constraints. Our computational experience shows that solving exactly this
problem by branch and bound needs prohibitive CPU time (see Table 3). Therefore, we propose an al-
ternative approach. We present a Lagrangean relaxation scheme incorporating a dual ascent method to-
gether with a heuristic construction phase method which shows in computational test to provide good
feasible solutions for this problem (see [2,4,9,11,12,14] for similar analysis in di�erent problems). As
commented above, no comparative testing with other procedures in the literature can be reported because
as far as we know, this is the ®rst time that this problem has been addressed.

Fig. 1. Time period t. Time period t � 1.
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The paper is organized as follows. In Section 2 the mathematical formulation of the model is presented,
together with a suitable reformulation more convenient for our optimization purposes. In Section 3 a
Lagrangean relaxation is proposed for this problem and its solution is presented. Section 4 develops the
heuristic phase of our solution method. Section 5 is devoted to the computational results and Section 6 to
the conclusions. The paper ends with an Appendix A with some technical results.

2. The model

The multiperiod two-echelon multicommodity capacitated plant location problem we deal with has the
objective of minimizing the total cost for meeting demands of the di�erent products speci®ed over time at
various customer locations. The version of the problem that we consider in the paper assumes the following
hypotheses. There are not holding decisions. The sets of customers and products, together with the feasible
locations for the facilities (plants and warehouses) are considered ®xed and known beforehand. Therefore,
they do not change over the time horizon. It is usual to consider seasons or months as a typical period
length for this kind of problem. Then, the time horizon is chosen in accordance with the period lengths and
the planning horizon. In addition, we will denote by:

I � f1; . . . ; ng set of customers, indexed by i 2 I .
L � f1; . . . ; qg set of product types, indexed by l 2 L .
J � f1; . . . ;mg set of possible location for warehouses, indexed by j 2 J .
K � f1; . . . ; pg set of possible location for plants, indexed by k 2 K.

At the beginning of the ®rst time period there exists a subset Kc (respectively Jc) of the whole set of
feasible locations for the plants (respectively warehouses) where operating facilities are established. These
facilities can be closed at the end of any time period t 2 f1; . . . ; Tg, but once closed they cannot be re-
opened. We denote by K0 (respectively J0) the set of feasible locations where there does not exist open plants
(respectively warehouses). These facilities can be opened at the beginning of any time period and it is also
assumed that if they were open they would not be closed. This hypothesis is quite reasonable. In real-life
applications the opening/closing of ®nal retailers usually leads to a loss of market because customers re-
quire a certain regularity to patronize a particular facility. In addition, this phenomenon increases the
operating cost.

Additionally, we assume that a minimum number of plants and warehouses must be open at the ®rst and
last time period which assures a minimum coverage of the demand at the beginning and after the time
horizon. Let us denote by ND1, NDT (respectively NC1, NCT ) the minimum number of warehouses (re-
spectively plants) open at the beginning of the ®rst time period and at the end of the last time period.

We consider the situation where both plants and warehouses have limited capacity which depends on the
time period. We denote by:

W t
j :� capacity of warehouse j at time period t.

Ct
k :� capacity of plant k at time period t.

dt
il :� demand of product l at customer i during time period t.

Finally, we assume a cost structure that includes both transportation costs of goods and maintenance
costs. For the elements of this problem we will use the following notation:

ct
ijl :� transportation cost per unit of product l from warehouse j to customer i at time period t.

bt
jkl :� transportation cost per unit of product l from plant k to warehouse j at time period t.

f t
j :� operating cost of a warehouse open at position j during time period t.

gt
k :� operating cost of a plant open at position k during time period t.
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Notice that we do not explicitly have an installation or setup cost for the facilities. This is because the
facilities which belong to the set Jc (respectively Kc) are already open at the beginning of the ®rst period.
Therefore, they do not have installation of setup cost. On the second hand, we consider that the facilities
which belong to J0 (respectively K0) have a ®xed setup cost which is charged at period T . This is possible
because, once these facilities are opened they will never be closed until the end of the planning horizon. The
decision variables of the problem are:

xt
ijl :� fraction (regarding to dt

il) of product l delivered to customer i from warehouse j at time period t.
yt

jkl :� fraction (regarding to W t
j ) of product l sent to warehouse j from plant k at time period t.

ut
j �

1 if warehouse j is open at the beginning of time period t;
0 otherwise:

�

vt
k �

1 if plant k is open at the beginning of time period t;
0 otherwise:

�
In addition, we denote by v��� the optimal objective value of Problem ���. Using these conventions, the

mathematical formulation of this problem is

�P� min g�x; y; u; v� :�
XT

t�1

Xn

i�1

Xm

j�1

Xq

l�1

ct
ijlx

t
ijld

t
il �

XT

t�1

Xm

j�1

Xp

k�1

Xq

l�1

bt
jkly

t
jklW

t
j �

XT

t�1

Xm

j�1

f t
j ut

j

�
XT

t�1

Xp

k�1

gt
kvt

k

s.t.

Xm

j�1

xt
ijl P 1 8i; 8l; 8t; �1�

Xn

i�1

Xq

l�1

dt
ilx

t
ijl6W t

j ut
j 8j; 8t; �2�

Xp

k�1

W t
j yt

jkl P
Xn

i�1

dt
ilx

t
ijl 8j; 8l; 8t; �3�

Xm

j�1

Xq

l�1

W t
j yt

jkl6Ct
kvt

k 8k; 8t; �4�

Xm

j�1

u1
j P ND1;

Xm

j�1

uT
j P NDT ; �5�

Xp

k�1

v1
k P NC1;

Xp

k�1

vT
k P NCT ; �6�

u1
j � 1 8j 2 Jc; ut

j P ut�1
j 8j 2 Jc8t; ut

j6 ut�1
j 8j 2 J0; 8t; �7�

v1
k � 1 8k 2 Kc; vt

k P vt�1
k 8k 2 Kc 8t; vt

k 6 vt�1
k 8k 2 K0; 8t; �8�
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xt
ijl; y

t
jkl P 0 8i; 8j; 8k; 8l; 8t; �9�

ut
j; v

t
k 2 f0; 1g 8j; 8k; 8t: �10�

The constraints (1) and (3) refer to the demand. The constraints (1) guarantee meeting the demand of each
customer for each one of the products in each time period t. Notice that warehouse j needs an amount of
product l equal to the sum of the amounts of this product that it delivers to the ®nal customers. The
constraints (2) and (4) refer to capacity. The constraint (2) assures that the total number of units delivered
from warehouse j is not greater than its capacity in each time period t. The constraint (4) is similar to (2)
but focused towards plants rather that warehouses. The constraints (5) and (6) state the minimum number
of warehouses and plants that must be open at the ®rst and last time period. The constraints (7) and (8)
describe the sets J � J0 [ Jc and K � K0 [ Kc.

This is a formulation often used for multiperiod models (see e.g. [19] or [6]). Thus, this formulation
simpli®es the understanding proccess of our model to the readers accustomed to read papers in this ®eld.
Nevertheless, from the point of view of our resolution approach, it is more convenient to deal with an
alternative formulation which will be proven equivalent (see Theorem 1). To this end, the following
variables zt

j and ft
k are introduced:

8j 2 J0; 8t; zt
j �

1 if a warehouse is established at j at the beginning of time period t;
0 otherwise:

�
8j 2 Jc;

8t < T ÿ 1;
zt

j �
1 if existing warehouse at j is removed at the end of time period t;
0 otherwise:

�

8j 2 Jc zT
j �

1 if warehouse j is open during all the planning horizon;

0 otherwise:

�
ft

k is analogously defined for the set of plants:

And the costs are de®ned as follows:

F t
j �

XT

r�t

f r
j ; total cost of warehouse j being established in time period t 8t; 8j 2 J0:

F t
j �

Xt

r�1

f r
j ; total cost of warehouse j removed at the end of time period t 8t; 8j 2 Jc:

Gt
k �

XT

r�t

gr
k; total cost of plant k being established in time period t 8t; 8k 2 K0:

Gt
k �

Xt

r�1

gr
k; total cost of plant k removed at the end of time period t 8t; 8k 2 Kc:

Let

Tjt � f1; . . . ; tg if j 2 J0

ft; . . . ; T g if j 2 Jc

�
and Tkt � f1; . . . ; tg if k 2 K0

ft; . . . ; Tg if k 2 Kc
:

�
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Problem �P� can be reformulated in terms of the variables zt
j, ft

k and the costs F t
j , Gt

k, namely �P 0�:

�P 0� min f �x; y; z; f� :�
XT

t�1

Xn

i�1

Xm

j�1

Xq

l�1

ct
ijlx

t
ijld

t
il �

XT

t�1

Xm

j�1

Xp

k�1

Xq

l�1

bt
jkly

t
jklW

t
j �

XT

t�1

Xm

j�1

F t
j zt

j

�
XT

t�1

Xp

k�1

Gt
kf

t
k

s.t. Xm

j�1

xt
ijl P 1 8i; 8l; 8t; �1�

Xn

i�1

Xq

l�1

dt
ilx

t
ijl6W t

j

X
r2Tjt

zr
j 8j; 8t; �2a�

Xp

k�1

W t
j yt

jkl P
Xn

i�1

dt
ilx

t
ijl 8j; 8l; 8t; �3�

Xm

j�1

Xq

l�1

W t
j yt

jkl6Ct
k

X
r2Tkt

fr
k 8k; 8t; �4a�

X
j2J0

z1
j �

X
j2Jc

XT

t�1

zt
j P ND1;

X
j2J0

XT

t�1

zt
j �
X
j2Jc

zT
j P NDT ; �5a�

X
k2K0

f1
k �

X
k2Kc

XT

t�1

ft
k P NC1;

X
k2Ko

XT

t�1

ft
k �

X
k2Kc

fT
k P NCT ; �6a�

XT

t�1

zt
j � 1 8j 2 Jc;

XT

t�1

zt
j6 1 8j 2 J0; �7a�

XT

t�1

ft
k � 1 8k 2 Kc;

XT

t�1

ft
k 6 1 8k 2 K0; �8a�

xt
ijl; y

t
jkl P 0 8i; 8j; 8k; 8l; 8t; �9�

zt
j; f

t
k 2 f0; 1g 8j; 8k; 8t: �10a�

Theorem 1. If �x; y; u; v� is a feasible solution of problem �P � then there exists a feasible solution �x0; y 0; z; f�
of problem �P 0� such that g�x; y; u; v� � f �x0; y0; z; f�. Conversely, if �x0; y0; z; f� is a feasible solution of
problem �P 0� then there exists a feasible solution �x; y; u; v� of problem �P � such that f �x0; y0; z; f� �
g�x; y; u; v�.
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The proof is included in Appendix A.
Theorem 1 proves that both formulations are equivalent in the sense that they provide the same set of

optimal solutions. From now on, we will always deal with problem �P 0�.
Problem �P 0� is a mixed-integer programming problem which includes as a particular instance the

UPLP. Since our problem includes as a particular case the UPLP and this problem is NP-hard [16] one
cannot expect to solve exactly large sizes of problem (P 0) in polynomial time. For this reason, we will adopt
a heuristic method to solve (P 0) for those instances. It is based on: (1) using a Lagrangean relaxation, and
(2) using an ``ad hoc'' procedure obtaining a feasible solution from the solutions of the relaxed problems.

3. Decomposition of the problem: Lagrangean relaxation

In this section, we consider a relaxation of problem �P 0� obtained relaxing the constraints that ensure
that demands are met. To this end, we associate nonnegative multipliers lt

il P 0 to the constraints (1) and
kt

jl P 0 to the constraints (3). Therefore the relaxed problem LR�k; l� is:

LR�k; l� min fk;l�x; y; z; f� :�
XT

t�1

Xn

i�1

Xm

j�1

Xq

l�1

ct
ijlx

t
ijld

t
il �

XT

t�1

Xm

j�1

Xp

k�1

Xq

l�1

bt
jkly

t
jklW

t
j �

XT

t�1

Xm

j�1

F t
j zt

j

�
XT

t�1

Xp

k�1

Gt
kf

t
k �

XT

t�1

Xn

i�1

Xq

l�1

lt
il 1

 
ÿ
Xm

j�1

xt
ijl

!

�
XT

t�1

Xm

j�1

Xq

l�1

kt
jl

Xn

i�1

dt
ilx

t
ijl

 
ÿ
Xp

k�1

W t
j yt

jkl

!

s:t: �2a�; �4a�; �5a�; �6a�; �7�; �8a�; �9�; �10a�:
A little thought about problem LR�k; l� leads us to separate it into two subproblems, LR1�k; l� and

LR2�k; l�. These two problems are the following:

LR1�k; l� min
XT

t�1

Xn

i�1

Xm

j�1

Xq

l�1

ct
ijld

t
il � kt

jld
t
il ÿ lt

il

� �
xt

ijl �
XT

t�1

Xm

j�1

F t
j zt

j

s:t: �2a�; �5a�; �7a�; xt
ijl P 0; zt

j 2 f0; 1g
and

LR2�k; l� min
XT

t�1

Xm

j�1

Xp

k�1

Xq

l�1

bt
jklW

t
j ÿ kt

jlW
t

j

� �
yt

jkl �
XT

t�1

Xp

k�1

Gt
kf

t
k

s:t: �4a�; �6a�; �8a�; yt
jkl P 0; ft

k 2 f0; 1g:
These problems can be solved independently and their solutions can be used to solve LR�k; l�. Once the

problems LR1�k; l� and LR2�k; l� have been solved, the value of LR�k; l� is given by the following prop-
osition whose proof is obvious.

Proposition 1.

v�LR�k; l�� � v�LR1�k; l�� � v�LR2�k; l�� �
XT

t�1

Xn

i�1

Xq

l�1

lt
il:
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3.1. Analysis of LR1�k; l�

First of all, in order to solve LR1�k; l� we will leave constraints (5a) aside. Then, LR1�k; l� can be
separated into m subproblems and once the solution of each subproblem is obtained, we will obligate
constraints (5a) to be ful®lled in such a way that the optimal value for LR1�k; l� is obtained. This last step is
justi®ed in Proposition 3.

Provided that (5a) is removed LR1�k; l� can be separated into the following m subproblems, one for each
j � 1; . . . ;m:

LR1j�k; l� min
XT

t�1

Xn

i�1

Xq

l�1

ct
ijld

t
il

�
� kt

jld
t
il ÿ lt

il

�
xt

ijl �
XT

t�1

F t
j zt

j

s:t:Xn

i�1

Xq

l�1

dt
ilx

t
ijl6W t

j

X
r2Tjt

zr
j 8t;

XT

t�1

zt
j6 1 if j 2 J0 or

XT

t�1

zt
j � 1 if j 2 Jc;

xt
ijl P 0 8i; 8l; 8t;

zt
j 2 f0; 1g 8t:

These problems are associated to each warehouse j 2 J and we can solve them independently.
In order to solve LR1j�k; l�, we distinguish two cases depending on either j 2 J0 or j 2 Jc because of the

relationships that hold among the zt
j variables on each case.

1. Let us assume j 2 J0. For each t0 � 1; . . . ; T let LR1jt0�k; l� be the following problem:

LR1jt0�k; l�
XT

t�t0

Xn

i�1

Xq

l�1

ct
ijld

t
il

�
� kt

jld
t
il ÿ lt

il

�
xt

ijl � F t0
j

s.t.Xn

i�1

Xq

l�1

dt
ilx

t
ijl6W t

j 8t P t0;

xt
ijl P 0 8i; 8l; 8t P t0:

2. Let us assume j 2 Jc. For each t0 � 1; . . . ; T let LR1jt0�k; l� be the following problem:

LR1jt0�k; l� min
Xt0

t�1

Xn

i�1

Xq

l�1

ct
ijld

t
il

�
� kt

jld
t
il ÿ lt

il

�
xt

ijl � F t0
j

s.t.Xn

i�1

Xq

l�1

dt
ilx

t
ijl6W t

j 8t6 t0;

xt
ijl P 0 8i; 8l; 8t6 t0:
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Proposition 2.

1. If j 2 J0, v�LR1j�k;l�� � min min
16 t0 6 T

v�LR1jt0�k; l��; 0
� �

:

2. If j 2 Jc, v�LR1j�k; l�� � min
16 t0 6 T

v�LR1jt0�k; l��:

Proof.

1. If j 2 J0, it may occur that: (a) for some t0 � 1; . . . ; T , zt0
j � 1 and zt

j � 0 for all t 6� t0 (this assumption
corresponds to the hypothesis that warehouse j is open at time period t0), or (b) zt

j � 0 for all t (this as-
sumption corresponds to the hypothesis that warehouse j is never open).
In case (a) we have, zt0

j � 1, zt
j � 0 for all t 6� t0. Then

XT

t�1

Xm

j�1

F t
j zj � F t0

j and
X
r2Tjt

zr
j �

1 if t P t0;
0 otherwise:

�
In addition, xt

ijl P 0 8i; 8l; 8t P t0 and xt
ijl � 0 8i; 8l; 8t < t0. Applying these transformations to problem

LR1j�k; l� it becomes problem LR1jt0�k; l�.
In case (b) zt

j � 0 for all t. Then, the objective function of problem LR1j�k; l� is zero. Thus, v�LR1j�k; l��
is the minimum between all these possibilities:

v�LR1j�k; l�� � min min
16 t0 6 T

v�LR1jt0�k; l��; 0
� �

:

2. If j 2 Jc, we have for some t0 � 1; . . . ; T , zt0
j � 1 and zt

j � 0 for all t 6� t0 (this assumption corresponds to
the hypothesis that warehouse j is closed at the end of t0).
Assume zt0

j � 1, zt
j � 0 for all t 6� t0. Then

XT

t�1

Xm

j�1

F t
j zj � F t0

j and
X
r2Tjt

zr
j �

1 if t6 t0;
0 otherwise:

�
In addition, xt

ijl P 0 8i; 8l; 8t6 t0 and xt
ijl � 0 8i; 8l; 8t > t0. Applying these transformations to problem

LR1j�k; l� it becomes problem LR1jt0�k; l�.
Thus, v�LR1j�k; l�� is the minimum between these possibilities:

v�LR1j�k; l�� � min
16 t0 6 T

v�LR1jt0�k; l��:

Notice that to solve LR1j�k; l� we have only needed to solve T independent, continuous linear pro-
gramming problems, LR1jt0�k; l�. In addition, solving LR1j�k; l� for each j � 1; . . . ;m we obtain the time
period in which the warehouse j has to be opened (if this is the case) or closed and therefore, the value of the
integer variables zt

j for all j; t. Let J � be the set of indexes of those warehouses which belong to J0 and have
never been opened after this process.

In order to solve LR1�k; l�, we obligate the constraints (5a) to be ful®lled. We denote by

D1�j� :� v�LR1j1�k; l�� ÿ v�LR1j�k; l��; if j 2 J0 and z1
j � 0;

�1 otherwise:

�
First of all, we check the number of warehouses open at t � 1. If this number is less than ND1 we calculate
D1�j� for each j 2 J0 closed at t � 1 and we open, one at a time, those warehouses j 2 J0 with the smallest
increment D1�j� until the constraint is ful®lled. Let J 1 denote the set of warehouses open in this way at
t � 1.
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Once, we have done that for t � 1 we proceed in the same way with the time period T . We denote by

DT �j� :�
min

t0
v�LR1jt0�k; l�� if j 2 J � n J 1;

v�LR1jT �k; l�� ÿ v�LR1j�k; l�� if j 2 Jc and zT
j � 0;

�1 otherwise:

8><>:
We check the number of warehouses open at T . If this number is less than NDT , we compute DT �j� for each
j 2 J � n J 1 and for each j 2 Jc closed at T . We select, one at a time, those warehouses with the smallest
increment DT �j� until the constraint is ful®lled. Let J T denote the set of warehouses chosen in this way.

If there exists a warehouse j 2 J � \ J T such that, mint0 v�LR1jt0�k; l�� � v�LR1j1�k; l�� then, we set
J 1 � J 1 n fj0g where j0 is such that D1�j0� � maxj2J1nJ� D1�j�.

The following result proves that this procedure gives us an optimal solution of LR1�k;l�.

Proposition 3.

v�LR1�k; l�� �
Xm

j�1

v�LR1j�k; l�� �
X
j2J1

D1�j� �
X
j2JT

DT �j�:

Proof. Once problem LR1j�k;l� has been solved for each j � 1; . . . ;m, four di�erent cases may occur:
1. The constraints (5a) are ful®lled. In this case J 1 � ;; J T � ;. Therefore, it is obvious by the decomposi-

tion of the problem into the m independent subproblems LR1j�k; l�, that

v�LR1�k; l�� �
Xm

j�1

v�LR1j�k; l��:

2. The number of warehouses open at t � 1 is less than ND1 and the number of warehouses open at T is
greater than or equal to NDT . In this case, J T � ; and the optimal solution of LR1j�k; l� is obtained
by opening at t � 1 the number of required warehouses with the smallest increment in the objective func-
tion. This increment is given by D1�j�. Therefore,

v�LR1�k; l�� �
Xm

j�1

v�LR1j�k; l�� �
X
j2J1

D1�j�:

3. The number of warehouses open at t � 1 is greater than or equal to ND1 and the number of warehouses
open at T is less than NDT . In this case, J 1 � ; and we have to ful®ll the requirement on NDT . This can be
done with those warehouses belonging to J � and Jc closed before T .
If j 2 J � which means that this warehouse is never open, we have v�LR1j�k; l�� � 0 and

v�LR1jt0�k; l��P 0 for all t0 � 1; . . . ; T . Then, if the warehouse j would have been opened, the smallest
increment for the objective function would have been given by DT �j�: On the other hand, let's assume that
j 2 Jc was closed before the time period T . If it would not have been closed, the minimum increment for the
objective function would have been DT �j�: Then

v�LR1�k; l�� �
Xm

j�1

v�LR1j�k; l�� �
X
j2JT

DT �j�:

4. The number of warehouses open at t � 1 (respectively at T ) is less than ND1 (respectively NDT ). We have
to ful®ll the constraints on ND1 (respectively NDT ) in such a way that the increment of the objective func-
tion is minimum.
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We start by opening the warehouses j with minimum D1�j� at t � 1 until the constraint on ND1 is
ful®lled. For those j 2 J � \ J 1, this implies that they are open at T as well. Once the constraint on ND1 is
ful®lled, we proceed in a similar way, but instead, using DT �j� to ful®ll the constraint on NDT . This process
produces the smallest increment in the objective function in such a way that the constraints on ND1, NDT

are ful®lled (except in the case that j 2 J � \ J T exists).
In the case of j 2 J � \ J T , to ful®ll the constraint on NDT we choose a warehouse j 2 J � and the min-

imum increment is given by opening it at t � 1. In this situation we can close one warehouse which belongs
to J 1 n J � reducing the objective function and the constraint on ND1 is still ful®lled. The maximal reduction
is given by that j 2 J 1 n J � with the maximum D1�j� value. Using this policy we obtain at the end an optimal
solution of LR1�k; l� and its value is

v�LR1�k; l�� �
Xm

j�1

v�LR1j�k; l�� �
X
j2J1

D1�j� �
X
j2JT

DT �j�:

3.2. Analysis of LR2�k; l�

In order to solve LR2�k; l�, we use the same strategy as for LR1�k; l�. Once (6a) is removed, we separate
LR2�k; l�, into p subproblems LR2k�k; l�, one for each k � 1; . . . ; p. Thus, we solve the problem for each
plant. These p subproblems will be separated into T subproblems, LR2kt0�k; l� for each t0 2 f1; . . . ; Tg. Then
we solve each one of them as we did for LR1�k; l�.

Proposition 4.
1. v�LR2k�k; l�� � min min

16 t0 6 T
v�LR2kt0�k; l��; 0

� �
8k 2 K0;

2. v�LR2k�k; l�� � min
16 t0 6 T

v�LR2kt0�k;l�� 8k 2 Kc;

3. v�LR2�k; l�� �Pp
k�1 v�LR2k�k; l�� �

P
k2K1 D01�k� �Pk2KT D0T �k�, where K1, KT ;D01�k� and D0T �k� are

de®ned in the same way as J 1; J T ;D1�j� and DT �j�, respectively.

The proof is similar to the proof of Propositions 2 and 3, once one subtitutes warehouses by plants.
Therefore, the proof is left out.

The solution of LR�k; l� for each set of multipliers veri®es the following well-known relation [10]:

v�P�P v�DL� :� max
k;l

v�LR�k; l��:

Since v�LR�k; l�� is a piecewise linear, concave function, we can use a subgradient approximation scheme to
get the maximum or at least a good lower bound. Nevertheless, it may happen that this solution is not
feasible (i.e., it does not verify the relaxed constraints) for problem �P 0�. Therefore, we approximate �DL� by
several choices of multipliers and, using the better solution, we construct a feasible solution by means of a
heuristic approach.

3.3. The subgradient method

For each pair of ®xed multipliers k; l the function v�LR�k; l�� is a piecewise linear, concave function
because it can be written as a pointwise in®mum of a�ne-linear functions. Therefore, we can obtain the
subdi�erential set of v�LR��; ��� at any point.
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Let X ��k; l� be the whole set of extreme optimal solutions of LR�k; l�, and denote by e�k; l� any of its
elements. That is to say, e�k; l� � �x; y; z; f� 2 X ��k; l�. Thus, we can write

v�LR�k; l�� � fk;l�e�k; l�� for any e�k; l� 2 X ��k; l�;
where fk;l was already de®ned as the objective function of problem LR�k; l�.

Then, a subgradient of the function fk;l at k; l is given by

ofk;l�e�k; l�� �
P

i dt
ilx

t
ijl ÿ

P
k W t

j yt
jkl

1ÿPj xt
ijl

" #
for any t; i; j; l:

We use the subgradient method [13] to get a lower bound for v�P 0�. The selection of the initial set of
multipliers is crucial because the quality of the ®rst solution depends very much on this choice. It should be
noted that for an appropriate choice of multipliers kt

jl and lt
il, the solution of LR�k; l� must be close to a

feasible solution. Otherwise, some of the constraints (1) or (3) would be violated and the corresponding
term in the objective function would obtain worse values. For this reason, we propose the following set of
initial multipliers:
1. Subproblem LR2�k; l�.

kt
jl � max

k
bt

jkl for all j; l; t:

Once we know kt
jl, we describe the multipliers for LR1�k; l�.

2. Subproblem LR1�k; l�.
lt

il � max
j
�ct

ijl � kt
jl�dt

il for all i; l; t:

In addition, as Barros and Labb�e suggest in [3], these results can be improved if the region of variation of
the multipliers is reduced. Applying this technique to our problem, the corresponding feasible region for the
multipliers is the following (see Appendix A for details on these results):

06 kt
jl6 min

k
bt

jkl

(
� Gt

kP
r2Tkt

Cr
k

)
8j; 8l; 8t:

Then

min
j
f�ct

ijl � kt
jl�dt

ilg6 lt
il6 min

j
ct

ijl

 (
� F t

jP
r2Tjt

W r
j
� kt

jl

!
dt

il

)
8i; 8l; 8t;

where, we denote by

Tjt � ft; . . . ; T g if j 2 J0

f1; . . . ; tg if j 2 Jc

�
and Tkt � ft; . . . ; Tg if k 2 K0

f1; . . . ; tg if k 2 Kc

�
:

4. Heuristic to construct a feasible solution

In the previous section, we develop an ascent procedure to generate a good solution for the relaxed
problem �DL�. This solution is very often infeasible for our original problem �P �. Therefore, we must
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develop an alternative procedure that starting from that solution constructs a good feasible solution for
�P 0�.

We propose the following scheme that consists of two di�erent steps. The ®rst step looks for capacities in
each time period t. Both for plants and warehouses. Once these capacities have been established for meeting
the demand, the second step looks for the best transportation plan between plants and warehouses, and
between warehouses and customers. A detailed description of this procedure is given in the following
paragraph.

Step 1. For each time period t compute the total capacity of all the open warehouses as well as the total
demand in t. Let us denote by Ct the di�erence between the demand and the capacity in this time period.

Arrange in nonincreasing sequence with respect to Ct all those time periods where the capacity of the
plants is not enough to cover the demand.

For every time period t0 arranged according to the above process assign to all the warehouses j which are
closed at t0 the index

I�j; t0� � v�LR1jt0�k; l��
� ÿ v�LR1j�k; l��

�� max
Ct0

W t0
j

; 1

( )" #
;

where

v�LR1j�k; l�� :�
v�LR1j1�k; l�� if j 2 J 1;
DT �j� � v�LR1j�k; l�� if j 2 J T ;
v�LR1j�k; l�� otherwise:

8<:
Remark. The reason for the above ordering is that the greater Ct, the larger the number of warehouses that
have to be opened and this a�ects the remaining time periods. Then, I�j; t0� gives us a cost index of the cost
which re¯ects the fact that warehouse j is opened at the time period t0 rather than in the time period where
it is currently open. To see this interpretation, just consider that v�LR1jt0�k; l�� ÿ v�LR1j�k; l�� is the in-
crement in the objective function if the warehouse j is opened at t0 and max �Ct0=W t0

j �; 1
� 	

is the number of
times that one should open the warehouse j to satisfy the uncovered demand.

The process consists of opening those warehouses in nondecreasing order of the index I��; t0� until the
demand in that time period is ful®lled.

Once the process is ®nished, if there is excess capacity, one veri®es whether there exists open warehouses
whose capacity is less than or equal to the excess. If this happens, one should close those warehouses with
greatest index among those verifying that their capacity is less than the excess of capacity of the whole
process. This swapping process continues until all the open warehouses at t0 have a capacity greater than or
equal to Ct0 .

The same procedure has to be applied to the opening of plants. Obviously the capacity of the open plants
in each time period has to be enough to satisfy the demand of the warehouses. The demand of the
warehouses coincides with the demand of all the customers in a considered time period. The only di�erence
in this step with respect to the previous one is that the index I�k; t0� is now computed based on
v�LR2k�k; l��.

Step 2. Once the warehouses and plants open in each time period t0 is known, we can replace the values
of these binary variables in the formulation of �P 0�. Therefore, �P 0� is a continuous linear program that can
be easily solved.

These two steps give us a feasible solution for �P 0�. In this process, we are intensively using the solution
of our relaxed problems.
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5. Computational study

The computational results presented in this section were designed to obtain the performance of our
algorithm with respect to several test problems. The considered model combining dynamic aspects with
multi-echelon location problems have not been considered previously in the literature. For this reason, no
comparisons with other computational tests can be reported.

The computational study has been performed in a subcomplex (virtual machine) with six processors and
1
2

Gb of RAM of a machine HP Exemplar SPP-1000 Series. The code has been written in C++ and uses
subroutines of IMSL to solve linear programs. In addition, CPLEX 6.0 has been used to obtain exact
solutions of medium sized problems by branch & bound using the parameters de®ned by default by the
solver. The data have been generated randomly. The transportation cost ct

ijl and bt
jkl have been computed

being proportional to the Euclidean distance among the location of ®nal customers and warehouses, and
plants and warehouses, respectively. The locations of all the facilities were uniformly distributed in the
square �1; 15� � �1; 15�. In addition, we assume that all these costs experience an increment between 10% and
25% in each time period (in¯ation rate, etc.)

The maintenance costs of warehouses and plants have been generated according to a uniform distri-
bution U�600; 1000�. The demand follows a uniform distribution U�0; 20�. Finally, the capacity of ware-
houses and plants has been drawn uniformly in U�50; 80�.

The minimum number of plants and warehouses open at the ®rst and the last time period depends on the
di�erence between the total demand requested in each time period and the average of the capacity of
warehouses (respectively plants) in that time period.

Table 1 describes the test problems that have been solved. Planning horizons from 1 to 4 periods have
been considered. For each planning horizon we have solved seven di�erent classes of problems. Each one of
them di�ers by the data structure assigned to the parameters in their formulations. These problems are
named ``P1'' to ``P7''. In this table, column ``Customer'' denotes the number of customers (I). The column
``Warehouses'' includes the number of warehouses distinguishing the number of warehouses that can be
open in future time periods (J0), the number of currently open warehouses (Jc) and J � J0 � Jc. The column
``Plants'' includes the same information with respect to the number of plants. Finally, the column
``Products'' indicates the number of di�erent commodities used in the problem.

Table 2 shows the size of each test problem for the considered planning horizons (T � 1; T � 2;
T � 3; T � 4). The row ``NV'' describes the number of decision variables and the row ``NC'' the number of
constraints for each time period in the problem �P 0�.

Finally, Table 3 shows the results for the considered planning horizons (T � 1; T � 2; T � 3; T � 4) .
For each planning horizon and problem class, at least 10 instances have been solved and the average results
are reported. In this table, ``H-Gap'' denotes the percentage gap between the feasible solution obtained

Table 1

Description of test problems

Customers Warehouses Plants Products

I J0 Jc J K0 Kc K L

P1 10 4 1 5 4 1 5 2

P2 10 5 2 7 5 2 7 3

P3 20 7 3 10 7 3 10 2

P4 20 8 4 12 8 4 12 3

P5 30 10 5 15 10 5 15 2

P6 50 14 6 20 14 6 20 2

P7 75 25 15 40 25 15 40 2
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Table 3

Computational results

P1 P2 P3 P4 P5 P6 P7

T � 1 H-Gap 0.4266 0.6012 0.8028 0.3358 0.9352 0.7442 0.9630

Worst-H 1.8420 1.9861 2.0145 1.7342 2.1467 2.0688 2.4362

CPU-H 17 17 22 35 35 68 2889

N 820 442 437 494 428 462 906

E-Gap 0.3903 0.1793 0.1986 0.3199 0.3138 * a *

Worst-E 1.9517 0.8965 0.8618 1.1391 0.9232 * *

CPU-E 0.12 0.36 0.97 3.3 2.53 * *

T � 2 H-Gap 0.6132 0.4121 0.2468 1.0629 1.0563 1.0155 1.1598

Worst-H 1.8234 1.5136 1.4762 2.2042 2.1968 2.4326 2.5143

CPU-H 43 36 72 96 173 282 7650

N 845 369 549 474 828 736 738

E-Gap 0.1063 0.1897 0.2037 0.8160 0.9606 * *

Worst-E 1.0450 1.1040 1.4665 1.2432 3.1316 * *

CPU-E 0.28 1.29 36.2 25.41 63.71 * *

T � 3 H-Gap 2.2613 2.2821 3.7425 2.6172 3.4055 2.6157 3.623

Worst-H 3.6531 3.7133 4.8941 3.9502 4.5167 4.0101 4.6899

CPU-H 101 131 115 369 216 811 9124

N 786 820 389 863 387 748 472

E-Gap 0.6045 2.2135 2.7941 1.0798 1.7346 * *

Worst-E 1.8435 3.3818 3.4343 1.4833 2.6560 * *

CPU-E 2.35 17.54 432.46 411.66 3988 * *

T � 4 H-Gap 3.6978 4.3105 4.8207 2.3071 4.4896 2.2023 4.5081

Worst-H 4.9105 5.9048 6.2153 3.8104 5.9109 3.6717 6.0984

CPU-H 119 139 257 339 343 1097 14089

N 739 425 570 371 425 489 390

E-Gap 0.8474 1.3176 1.6553 1.0092 1.402 * *

Worst-E 2.7363 3.6528 2.7082 2.3836 2.5517 * *

CPU-E 6.94 80.67 1507 5138 6555 * *

a * Means that no exact optimal solutions are available.

Table 2

Size of test problems

P1 P2 P3 P4 P5 P6 P7

T � 1 NV 160 371 620 1176 1380 2840 9280

NC 52 81 102 146 152 222 394

T � 2 NV 320 742 1240 2352 2760 5680 18560

NC 94 148 184 268 274 404 704

T � 3 NV 480 1113 1860 3528 4140 8520 27840

NC 134 213 264 388 394 584 1014

T � 4 NV 640 1484 2480 4704 5520 11360 37120

NC 174 278 344 508 514 764 1324
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applying the heuristic and the greatest lower bound obtained in each instance between the continuous and
the Lagrangean relaxation of (P 0). ``Worst-H'' denotes the worst result used to compute the average H-Gap.
``N'' is the number of iterations needed by the heuristic algorithm and ``CPU-H'' is the average time in
seconds used for these iterations. ``E-Gap'' denotes the percentage gap with respect to the exact solution of
the problem obtained using CPLEX. This gap has been obtained with respect to 10 exact solutions in each
case. ``Worst-E'' denotes the worst result used to compute the average E-Gap, and CPU-E is the average
time in seconds used by CPLEX to solve the problems. Notice that the values of ``E-Gap'' are not complete.
The reason for the missing values is that to obtain the exact solutions CPLEX solver needs prohibitive
computational times. For instance, for problem P4 with T � 4 CPLEX took around 5000 seg. of CPU while
for P5 with T � 4 CPLEX was even not able to obtain the exact solution in many cases. Summarizing the
results shown in Table 3, the heuristic method that we propose to solve the multiperiod two-echelon
multicommodity capacitated plant location problem provides solutions whose gaps (H-Gap) range between
0.24% and 5%. It is worth noting that these gaps are computed with respect to lower bounds of the optimal
values. The variability in the H-Gap depends on the quality of the lower bound found in each case. In those
cases where exact optimal solutions have been obtained the gaps (E-Gap) are much smaller and more
stable. In these cases E-Gap ranges between 0:17 and 2:7. Finally, the CPU-E time is smaller than CPU-H
for small-sized problems. However, when the size of the problem increases CPU-H is more stable and much
smaller than CPU-E. These results show that our heuristic behaves acceptably well to solve this kind of
problems.

6. Conclusions

The multiperiod two-echelon multicommodity capacitated plant location problem combines many
features previously considered in the ®eld of locational analysis which, as far as we know, have never been
studied all together. Despite its di�culty, this is a natural model to formulate all those large-scale distri-
bution models with seasonal demand.

In this paper, we propose a heuristic method to solve this problem. Our method is based on a
Lagrangean relaxation which provides solutions (possibly infeasible for the original problem) but verifying
the integrality constraints. In a second step, starting with these solutions we build feasible solutions of our
original problem. We report computational results which show the gaps between the solutions that we
propose and lower bounds of the optimal solution and exact solutions. The values of the gaps (H-Gap,
E-Gap) and the computational times shown in Table 3 indicate that our heuristic is acceptable to solve the
multiperiod two-echelon multicommodity capacitated plant location problem.
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Appendix A

In this section we prove Theorem 1 and we obtain a reduced feasible region for the multipliers of
problem LR�k; l�.
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Proof of Theorem 1. Let �x; y; u; v� be a feasible solution of problem �P �. We de®ne �x0; y0; z; f� as:

x0 � x; y0 � y;

8j 2 J0;
z1

j � u1
j

zt
j � ut

j ÿ utÿ1
j 8t > 1

and 8j 2 Jc;
zT

j � uT
j

zt
j � ut

j ÿ ut�1
j 8t < T ;

8k 2 K0;
f1

k � v1
k

ft
k � vt

k ÿ vtÿ1
k 8t > 1

and 8k 2 Kc;
fT

k � vT
k

ft
k � vt

k ÿ vt�1
k 8t < T :

By constraints (7) (respectively (8)) and (10) we obtain zt
j 2 f0; 1g 8j; 8t (respectively ft

k 2 f0; 1g 8k; 8t). In
addition, by the de®nition of the variables z and f, we have:

ut
j �

X
r2Tjt

zr
j and vt

k �
X
r2Tkt

fr
k:

Therefore, since �x; y; u; v� is a feasible solution of �P �, it is straightforward to substitute u and v in the
constraints of �P � to check that �x0; y0; z; f� verify the constraints of �P 0�. Hence, �x0; y 0; z; f� is a feasible
solution of �P 0�.

On the other hand, by the de®nition of F t
j and Gt

k we have:

8j 2 J0; f t
j �

F t
j ÿ F t�1

j 8t < T ;

F T
j if t � T :

(
and 8j 2 Jc; f t

j �
F t

j ÿ F tÿ1
j 8t > 1;

F 1
j if t � 1:

(

8k 2 K0; gt
k �

Gt
k ÿ Gt�1

k 8t < T ;

GT
k if t � T :

(
and 8k 2 Kc; gt

k �
Gt

k ÿ Gtÿ1
k 8t > 1;

G1
k if t � 1:

(

Then we obtain

XT

t�1

Xm

j�1

f t
j ut

j �
X
j2J0

XTÿ1

t�1

�F t
j

"
ÿ F t�1

j �
Xt

r�1

zr
j � F T

j

XT

r�1

zr
j

#
�
X
j2Jc

F 1
j

XT

r�1

zr
j

"
�
XT

t�2

�F t
j ÿ F tÿ1

j �
XT

r�t

zr
j

#

�
X
j2J0

XT

t�1

F t
j zt

j

" #
�
X
j2Jc

XT

t�1

F t
j zt

j

" #
�
XT

t�1

Xm

j�1

F t
j zt

j; �A:1�

and in the same way,

XT

t�1

Xp

k�1

gt
kvt

k �
XT

t�1

Xp

k�1

Gt
kf

t
k: �A:2�

Therefore, g�x; y; u; v� � f �x0; y 0; z; f�.
Conversely, let �x0; y 0; z; f� be a feasible solution of problem �P 0�. We de®ne �x; y; u; v� as:

x � x0; y � y0; ut
j �

X
r2Tjt

zr
j 8j; t; vt

k �
X
r2Tkt

fr
k 8j; t:

By constraints (7a) (respectively (8a)) and (10a) we obtain ut
j 2 f0; 1g 8j; 8t (respectively

vt
k 2 f0; 1g 8k; 8t�. In addition, by the de®nition of the variables u and constraints (7a) we obtain
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u1
j �

PT
t�1 zt

j � 1 8j 2 Jc and by (10a) we obtain ut
j P ut�1

j 8j 2 Jc 8t and ut
j6 ut�1

j 8j 2 J0 8t. Then, the
variables u ful®ll the constraints (7). In the same way, by (8a) and (10a) one can prove that the variables v
verify the constraints (8). Substituting z and f by u and v in the remainder constraints of �P 0� it is
straightforward that u and v ful®ll the constraints of �P �. Therefore, �x; y; u; v� is a feasible solution of �P�
and by (A.1) and (A.2) we have, f �x0; y 0; z; f� � g�x; y; u; v�:

Reduced feasible region for the multipliers of problem LR�k; l�:
Let �LP � denote the continuous relaxation of Problem �P 0� and �DLP � the continuous dual of �LP �.

Then, the mathematical formulation of problem �DLP� is

�DLP� max
XT

t�1

Xn

i�1

Xq

l�1

lt
il �

X
j2Jc

cj ÿ
X
j2J0

cj � ND1/1 � NDT /T �
X
k2Kc

dk ÿ
X
k2K0

dk � NC1w1

� NCT wT

s.t.

lt
il ÿ dt

ila
t
j ÿ dt

ilk
t
jl6 ct

ijld
t
il 8i; j; l; t; �A:3�

W t
j kt

jl ÿ W t
j bt

k 6W t
j bt

jkl 8j; k; l; t; �A:4�XT

r�1

W r
j

 !
a1

j ÿ cj � /T � /16 F 1
j 8j 2 J0; �A:5�

XT

r�t

W r
j

 !
at

j ÿ cj � /T 6 F t
j 8j 2 J0; t � 2; . . . ; T ; �A:6�

XT

r�1

W r
j

 !
aT

j � cj � /1 � /T 6 F T
j 8j 2 Jc; �A:7�

Xt

r�1

W r
j

 !
at

j ÿ cj � /16 F t
j 8j 2 Jc; t � 1; . . . ; T ÿ 1; �A:8�

XT

r�1

Cr
k

 !
b1

k ÿ dk � wT � w16G1
k 8k 2 K0; �A:9�

XT

r�t

Cr
k

 !
bt

k ÿ dk � wT 6Gt
k 8k 2 K0; t � 2; . . . ; T ; �A:10�

XT

r�1

Cr
k

 !
bT

k � dk � w1 � wT 6GT
k 8k 2 Kc; �A:11�

Xt

r�1

Cr
k

 !
bt

k ÿ dk � w16Gt
k 8k 2 Kc; t � 1; . . . ; T ÿ 1; �A:12�

cj unrestricted 8j 2 Jc : cj P 0 8j 2 J0; �A:13�
dk unrestricted 8k 2 Kc : dk P 0 8k 2 K0; �A:14�
lt

il; a
t
j; k

t
jl; b

t
k P 0 8i; 8j; 8k; 8l; 8t; �A:15�

/1;/T ;w1;wT P 0: �A:16�
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The feasible region of �DLP� is used to obtain bounds on the range of variation of multipliers �k; l�.

Lemma 1. A reduced feasible region for the multipliers �k; l� is

06 kt
jl6min

k
bt

jkl

(
� Gt

kP
r2Tkt

Cr
k

)
8j; 8l; 8t:

min
j
f�ct

ijl � kt
jl�dt

ilg6 lt
il6min

j
ct

ijl

 (
� F t

jP
r2T kt

W r
j
� kt

jl

!
dt

il

)
8i; 8l; 8t:

Proof. The constraints of �DLP� allow us to establish a reduced feasible region for the dual variables:

lt
il6 �ct

ijl � at
j � kt

jl�dt
il 8i; 8j; 8l; 8t; �A:17�

kt
jl6 bt

jkl � bt
k 8j; 8k; 8l; 8t: �A:18�

In addition, it holds

if j 2 J0 ) at
j6

F t
jPT

r�t W r
j

� cjPT
r�t W r

j

with cj P 0;

if j 2 Jc )
at

j6
F t

jPt

r�1
W r

j

ÿ cjPt

r�1
W r

j

if cj6 0

at
j6

F t
jPt

r�1
W r

j

if cj P 0;

8>><>>:
if k 2 K0 ) bt

k 6
Gt

kPT
r�t Cr

k

� dkPT
r�t Cr

k

with dk P 0;

if k 2 Kc )
bt

k 6
Gt

kPt

r�1
Cr

k

ÿ dkPt

r�1
Cr

k

if dk 6 0

bt
k 6

Gt
kPt

r�1
Cr

k

if dk P 0:

8><>:
Therefore, if we assume j 2 J0 and k 2 K0 with dk 6 0; we have

lt
il6 ct

ijl

 
� F t

jPT
r�t W r

j

� cjPT
r�t W r

j

� bt
jkl �

Gt
kPt

r�1 Cr
k

ÿ dkPt
r�1 Cr

k

!
dt

il:

Then, if lt
il achieves its maximum value, the following two terms appear in the objective function of �DLP �:

dt
ilPT

r�t W r
j

 
ÿ 1

!
cj and 1

�
ÿ dt

ilPt
r�1 Cr

k

�
dk with cj P 0; dk 6 0:

Now, since we have that

dt
ilPT

r�tW
r

j

< 1; and
dt

ilPt
r�1Cr

k

< 1;

we can conclude that cj � 0 and dk � 0. Analogously, if we assume that either j 2 J0 and k 2 K0 or j 2 Jc

and k 2 K0 or k 2 Kc we obtain the same conclusion.
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From (A.17) and (A.18) we obtain

lt
il6min

j
ct

ijl

 (
� F t

jP
r2T jt

W r
j
� kt

jl

!
dt

il

)
8i; 8l; 8t;

kt
jl6min

k
bt

jkl

(
� Gt

kP
r2T kt

Cr
k

)
8j; 8l; 8t:

On the other hand, since �DLP� is a maximization problem we can use (A.3) to have

lt
il � �ct

ijl � at
j � kt

jl�dt
il P �ct

ijl � kt
jl�dt

il P min
j
f�ct

ijl � kt
jl�dt

ilg 8i; 8l; 8t:

In conclusion, a reduced feasible region of multipliers can be given as follows:

06 kt
jl6min

k
bt

jkl

(
� Gt

kP
r2T kt

Cr
k

)
8j; 8l; 8t:

Then, once the value of kt
jl is known we get for lt

il the following region:

min
j
f�ct

ijl � kt
jl�dt

ilg6 lt
il6min

j
ct

ijl

 (
� F t

jP
r2T jt

W r
j
� kt

jl

!
dt

il

)
8i; 8l; 8t:
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